
Linux Automation with Ansible 8.0

Red Hat Academy - RH294 Chapter 3 1 of 7

Contents
Ansible Playbooks and Ad Hoc Commands ... 1

Formatting an Ansible Playbook ... 1

Running Playbooks .. 4

Increasing Output Verbosity ... 5

Syntax Verification .. 6

Executing a Dry Run .. 6

Ansible Playbooks and Ad Hoc Commands

Ad hoc commands can run a single, simple task against a set of targeted hosts as a one-time
command. The real power of Ansible, however, is in learning how to use playbooks to run
multiple, complex tasks against a set of targeted hosts in an easily repeatable manner.

A play is an ordered set of tasks run against hosts selected from your inventory. A playbook is a
text file containing a list of one or more plays to run in a specific order.

Plays allow you to change a lengthy, complex set of manual administrative tasks into an easily
repeatable routine with predictable and successful outcomes. In a playbook, you can save the
sequence of tasks in a play into a human-readable and immediately runnable form. The tasks
themselves, because of the way in which they are written, document the steps needed to deploy
your application or infrastructure.

Formatting an Ansible Playbook

To help you understand the format of a playbook, review this ad hoc command from a previous
chapter:

[student@workstation ~]$ ansible -m user -a "name=newbie uid=4000
state=present" \
> servera.lab.example.com

This can be rewritten as a single task play and saved in a playbook. The resulting playbook
appears as follows:

- name: Configure important user consistently
 hosts: servera.lab.example.com
 tasks:
 - name: newbie exists with UID 4000
 user:
 name: newbie

Linux Automation with Ansible 8.0

Red Hat Academy - RH294 Chapter 3 2 of 7

 uid: 4000
 state: present

A playbook is a text file written in YAML format, and is normally saved with the extension yml.
The playbook uses indentation with space characters to indicate the structure of its data. YAML
does not place strict requirements on how many spaces are used for the indentation, but there are
two basic rules.

• Data elements at the same level in the hierarchy (such as items in the same list) must
have the same indentation.

• Items that are children of another item must be indented more than their parents.

You can also add blank lines for readability.

Only the space character can be used for indentation; tab characters are not allowed.

If you use the vi text editor, you can apply some settings which might make it easier to edit your
playbooks. For example, you can add the following line to your $HOME/.vimrc file, and when vi
detects that you are editing a YAML file, it performs a 2-space indentation when you press the
Tab key and autoindents subsequent lines.

autocmd FileType yaml setlocal ai ts=2 sw=2 et

A playbook begins with a line consisting of three dashes (---) as a start of document marker. It
may end with three dots (...) as an end of document marker, although in practice this is often
omitted.

In between those markers, the playbook is defined as a list of plays. An item in a YAML list
starts with a single dash followed by a space. For example, a YAML list might appear as
follows:

- apple
- orange
- grape

In , the line after --- begins with a dash and starts the first (and only) play in the list of plays.

The play itself is a collection of key-value pairs. Keys in the same play should have the same
indentation. The following example shows a YAML snippet with three keys. The first two keys
have simple values. The third has a list of three items as a value.

 name: just an example
 hosts: webservers
 tasks:
 - first
 - second
 - third

Linux Automation with Ansible 8.0

Red Hat Academy - RH294 Chapter 3 3 of 7

The original example play has three keys, name, hosts, and tasks, because these keys all have
the same indentation.

The first line of the example play starts with a dash and a space (indicating the play is the first
item of a list), and then the first key, the name attribute. The name key associates an arbitrary
string with the play as a label. This identifies what the play is for. The name key is optional, but
is recommended because it helps to document your playbook. This is especially useful when a
playbook contains multiple plays.

- name: Configure important user consistently

The second key in the play is a hosts attribute, which specifies the hosts against which the play's
tasks are run. Like the argument for the ansible command, the hosts attribute takes a host
pattern as a value, such as the names of managed hosts or groups in the inventory.

 hosts: servera.lab.example.com

Finally, the last key in the play is the tasks attribute, whose value specifies a list of tasks to run
for this play. This example has a single task, which runs the user module with specific
arguments (to ensure user newbie exists and has UID 4000).

 tasks:
 - name: newbie exists with UID 4000
 user:
 name: newbie
 uid: 4000
 state: present

The tasks attribute is the part of the play that actually lists, in order, the tasks to be run on the
managed hosts. Each task in the list is itself a collection of key-value pairs.

In this example, the only task in the play has two keys:

• name is an optional label documenting the purpose of the task. It is a good idea to name
all your tasks to help document the purpose of each step of the automation process.

• user is the module to run for this task. Its arguments are passed as a collection of key-
value pairs, which are children of the module (name, uid, and state).

The following is another example of a tasks attribute with multiple tasks, using the service
module to ensure that several network services are enabled to start at boot:

 tasks:
 - name: web server is enabled
 service:
 name: httpd
 enabled: true

 - name: NTP server is enabled
 service:

Linux Automation with Ansible 8.0

Red Hat Academy - RH294 Chapter 3 4 of 7

 name: chronyd
 enabled: true

 - name: Postfix is enabled
 service:
 name: postfix
 enabled: true

The order in which the plays and tasks are listed in a playbook is important, because Ansible
runs them in the same order.

The playbooks you have seen so far are basic examples, and you will see more sophisticated
examples of what you can do with plays and tasks as this course continues.

Running Playbooks

The ansible-playbook command is used to run playbooks. The command is executed on the
control node and the name of the playbook to be run is passed as an argument:

[student@workstation ~]$ ansible-playbook site.yml

When you run the playbook, output is generated to show the play and tasks being executed. The
output also reports the results of each task executed.

The following example shows the contents of a simple playbook, and then the result of running
it.

[student@workstation playdemo]$ cat webserver.yml

- name: play to setup web server
 hosts: servera.lab.example.com
 tasks:
 - name: latest httpd version installed
 yum:
 name: httpd
 state: latest
...output omitted...
[student@workstation playdemo]$ ansible-playbook webserver.yml

PLAY [play to setup web server]
**

TASK [Gathering Facts]

ok: [servera.lab.example.com]

TASK [latest httpd version installed]
**
changed: [servera.lab.example.com]

PLAY RECAP

Linux Automation with Ansible 8.0

Red Hat Academy - RH294 Chapter 3 5 of 7

servera.lab.example.com : ok=2 changed=1 unreachable=0 failed=0

Note that the value of the name key for each play and task is displayed when the playbook is run.
(The Gathering Facts task is a special task that the setup module usually runs automatically at
the start of a play. This is covered later in the course.) For playbooks with multiple plays and
tasks, setting name attributes makes it easier to monitor the progress of a playbook's execution.

You should also see that the latest httpd version installed task is changed for
servera.lab.example.com. This means that the task changed something on that host to ensure
its specification was met. In this case, it means that the httpd package probably was not installed
or was not the latest version.

In general, tasks in Ansible Playbooks are idempotent, and it is safe to run a playbook multiple
times. If the targeted managed hosts are already in the correct state, no changes should be made.
For example, assume that the playbook from the previous example is run again:

[student@workstation playdemo]$ ansible-playbook webserver.yml

PLAY [play to setup web server]
**

TASK [Gathering Facts]

ok: [servera.lab.example.com]

TASK [latest httpd version installed]
**
ok: [servera.lab.example.com]

PLAY RECAP

servera.lab.example.com : ok=2 changed=0 unreachable=0 failed=0

This time, all tasks passed with status ok and no changes were reported.

Increasing Output Verbosity

The default output provided by the ansible-playbook command does not provide detailed task
execution information. The ansible-playbook -v command provides additional information, with
up to four total levels.

Option Description
-v The task results are displayed.
-vv Both task results and task configuration are displayed
-vvv Includes information about connections to managed hosts

-vvvv Adds extra verbosity options to the connection plug-ins, including users being used in
the managed hosts to execute scripts, and what scripts have been executed

Linux Automation with Ansible 8.0

Red Hat Academy - RH294 Chapter 3 6 of 7

Syntax Verification

Prior to executing a playbook, it is good practice to perform a verification to ensure that the
syntax of its contents is correct. The ansible-playbook command offers a --syntax-check
option that you can use to verify the syntax of a playbook. The following example shows the
successful syntax verification of a playbook.

[student@workstation ~]$ ansible-playbook --syntax-check webserver.yml

playbook: webserver.yml

When syntax verification fails, a syntax error is reported. The output also includes the
approximate location of the syntax issue in the playbook. The following example shows the
failed syntax verification of a playbook where the space separator is missing after the name
attribute for the play.

[student@workstation ~]$ ansible-playbook --syntax-check webserver.yml
ERROR! Syntax Error while loading YAML.
 mapping values are not allowed in this context

The error appears to have been in ...output omitted... line 3, column 8, but
may
be elsewhere in the file depending on the exact syntax problem.

The offending line appears to be:

- name:play to setup web server
 hosts: servera.lab.example.com
 ^ here

Executing a Dry Run

You can use the -C option to perform a dry run of the playbook execution. This causes Ansible
to report what changes would have occurred if the playbook were executed, but does not make
any actual changes to managed hosts.

The following example shows the dry run of a playbook containing a single task for ensuring that
the latest version of httpd package is installed on a managed host. Note that the dry run reports
that the task would effect a change on the managed host.

[student@workstation ~]$ ansible-playbook -C webserver.yml

PLAY [play to setup web server]
**

TASK [Gathering Facts]

ok: [servera.lab.example.com]

Linux Automation with Ansible 8.0

Red Hat Academy - RH294 Chapter 3 7 of 7

TASK [latest httpd version installed]
**
changed: [servera.lab.example.com]

PLAY RECAP

servera.lab.example.com : ok=2 changed=1 unreachable=0 failed=0

ansible-playbook(1) man page

Source: https://rha.ole.redhat.com/rha/app/courses/rh294-8.0/pages/ch03

	Ansible Playbooks and Ad Hoc Commands
	Formatting an Ansible Playbook
	Running Playbooks
	Increasing Output Verbosity
	Syntax Verification
	Executing a Dry Run

